Press Releases
Tuning the Energy Levels of Organic Semiconductors
Press Release from 04 July, 2019
Published on in PRESS RELEASES
[Deutsche Version unter "read more"]
Physicists from the Dresden Integrated Center for Applied Physics and Photonic Materials (IAPP) and the Center for Advancing Electronics Dresden (cfaed) at the TU Dresden, together with researchers from Tübingen, Potsdam and Mainz were able to demonstrate how electronic energies in organic semiconductor films can be tuned by electrostatic forces. A diverse set of experiments supported by simulations were able to rationalize the effect of specific electrostatic forces exerted by the molecular building blocks on charge carriers. The study was published recently in Nature Communications.
In electronic devices based on organic semiconductors such as solar cells, light-emitting diodes, photodetectors or transistors, electronic excitations and charge transport levels are important concepts to describe their operation principles and performances. The corresponding energetics, however, are more difficult to access and to tune than in conventional inorganic semiconductors like silicon chips, which stands as a general challenge. This applies both to the measurement and to the controlled influence from outside.
One tuning knob exploits the long-range Coulomb interactions, which is enhanced in organic materials. In the present study, the dependence of the energies of charge transport levels and of excitonic states on blend composition and molecular orientation in the organic material is explored. Excitons are bound pairs of an electron and a hole that are formed in the semiconductor material by light absorption. Scientists refer to blend composition when the components consist of different organic semiconducting materials. The findings demonstrate that the energetics in organic films can be tuned by adjusting a single molecular parameter, namely the molecular quadrupole moment in the pi-stacking direction of the molecules. An electric quadrupole can consist of two positive and two equally strong negative charges which form two oppositely equal dipoles. In the simplest case, the four charges are alternately arranged at the corners of a square.
The authors further link device parameters of organic solar cells such as the photovoltage or the photocurrent to this quadrupole moment. The results help to explain recent breakthroughs of device efficiency in organic solar cells, which are based on a new class of organic materials. As the observed electrostatic effect is a general property of organic materials, including so-called “small molecules” and polymers, it can help to improve the performance of all types of organic devices.
Paper title: “Impact of molecular quadrupole moments on the energy levels at organic heterojunctions” (Nature Communications)
Web: https://www.nature.com/articles/s41467-019-10435-2
DOI: 10.1038/s41563-018-0030-8
Authors: M. Schwarze, K. S. Schellhammer, K. Ortstein, J. Benduhn, C. Gaul, A. Hinderhofer, L. Perdigón Toro, R. Scholz, J. Kublitski, S. Roland, M. Lau, C. Poelking, D. Andrienko, G. Cuniberti, F. Schreiber, D. Neher, K. Vandewal, F. Ortmann, Karl Leo
Press pictures:
1) Download from https://cfaed.tu-dresden.de/files/Images/dynamic/press_releases/2019/ortmann_edg-fac_a-b.png
Image caption: Examples of film structures used for the calculations of the charge - quadrupole interaction energy (EQ) of crystalline films in edge-on (a) and face-on orientation (b). The molecules are represented by discs for illustration purpose. The length scale is given in Å. EQ values are calculated for the red molecules at the film surface.
Author: Frank Ortmann
2) Download from https://cfaed.tu-dresden.de/files/Images/people/research-groups+phds/ortmann-group/frank-ortmann_JL011117378.jpg
Image caption: Dr. Frank Ortmann, cfaed Independent Research Group Leader
Photo: cfaed / Jürgen Lösel
About the Computational Nanoelectronics Group
The research group at the Center for Advancing Electronics Dresden (cfaed) headed by Dr. Frank Ortmann investigates electronic properties and charge transport properties of novel semiconductor materials. Here, organic semiconductors are currently an important focus of the work, which is funded by the German Research Foundation under the Emmy Noether Program. The group has been based at the cfaed since 2017.
Info: https://cfaed.tu-dresden.de/ortmann-home
Press Contact:
Prof. Karl Leo
Dresden Integrated Center for Applied Physics and Photonic Materials (IAPP), TU Dresden
E-Mail: karl.leo@iapp.de
Dr. Frank Ortmann
Technische Universität Dresden, Center for Advancing Electronics Dresden (cfaed)
Tel.: +49 (0)351 463 43260
E-Mail: frank.ortmann@tu-dresden.de
Matthias Hahndorf
cfaed, Head of Communications
Phone: +49 (0)351 463 42847
E-mail: matthias.hahndorf@tu-dresden.de
About cfaed
cfaed is a microelectronics research cluster funded by the German Excellence Initiative. It comprises 11 cooperating institutes in Saxony, host university is the Technische Universität Dresden (TUD). About 300 scientists from more than 20 countries investigate new technologies for electronic information processing. These technologies are inspired by innovative materials such as silicon nanowires, carbon nanotubes or polymers or based on completely new concepts such as the chemical chip or circuit fabrication methods by self-assembling structures such as DNA-Origami. The orchestration of these new devices into heterogeneous information processing systems with focus on their resilience and energy-efficiency is also part of cfaed’s research program which comprises nine different research paths.
www.cfaed.tu-dresden.de
[Deutsche Version]
PRESSEMITTEILUNG vom 04. Juli 2019
Abstimmung der Energieniveaus von organischen Halbleitern
Physiker des Dresden Integrated Center for Applied Physics and Photonic Materials (IAPP) und des Center for Advancing Electronics Dresden (cfaed) der TU Dresden konnten gemeinsam mit Forschern aus Tübingen, Potsdam und Mainz zeigen, wie elektronische Energien in organischen Halbleiterfilmen durch elektrostatische Kräfte eingestellt werden können. Eine Reihe von Experimenten, die durch Simulationen unterstützt wurden, konnte die Wirkung spezifischer elektrostatischer Kräfte, die von den molekularen Bausteinen auf Ladungsträger ausgeübt werden, erklären. Die Studie wurde kürzlich im Fachmagazin „Nature Communications“ veröffentlicht.
In elektronischen Bauteilen wie Solarzellen, Leuchtdioden, Fotodetektoren oder Transistoren, die auf organischen Halbleitern beruhen, sind elektronische Anregungen und Energieniveaus für den Ladungstransport wichtige Größen zum Verständnis ihrer Funktionsgrundlagen und ihrer Leistungsfähigkeit. Die Verteilung der Energieniveaus innerhalb solcher Bauteile ist jedoch deutlich schwieriger zugänglich als bei herkömmlichen anorganischen Halbleitern, wie es die klassischen Siliziumchips sind. Dies gilt sowohl für die Messung als auch für die kontrollierte Beeinflussung von außen.
Ein Ansatz, um eine Abstimmung zu ermöglichen, nutzt die Coulomb-Wechselwirkungen, die zwischen allen elektrisch geladenen Teilchen auftreten und bei organischen Materialien stärker sind. In der vorliegenden Arbeit wird untersucht, inwiefern das energetische Gefüge von den unterschiedlichen Ladungstransportniveaus und von Zuständen der Exzitonen abhängt. Exzitonen sind gebundene Paare eines Elektrons und eines Lochs, die im Halbleitermaterial durch Lichtabsorption gebildet werden. Diese Größen wurden in ihrem Verhältnis zur spezifischen Zusammensetzung der Mischsysteme und der molekularen Orientierung im organischen Material betrachtet. Von Mischsystemen sprechen die Wissenschaftler, wenn die Bauelemente aus Mischungen verschiedener organischer Halbleitermaterialien bestehen.
Die Ergebnisse der Studie zeigen, dass die Energie in organischen Filmen durch die Variation eines einzelnen molekularen Parameters, nämlich des molekularen Quadrupolmoments in Pi-Stapelrichtung der Moleküle, eingestellt werden kann. Ein elektrischer Quadrupol kann aus zwei positiven und zwei gleich starken negativen Ladungen bestehen, die zwei entgegengesetzt-gleiche Dipole bilden. Im einfachsten Fall befinden sich die vier Ladungen in alternierender Anordnung an den Ecken eines Quadrates. Die Autoren stellen außerdem eine Verknüpfung zwischen Bauelement-Parametern von organischen Solarzellen wie Fotospannung oder Fotostrom und diesem Quadrupolmoment her.
Die Ergebnisse helfen, die jüngsten Durchbrüche bei der Effizienz von Bauelementen in organischen Solarzellen zu erklären, die auf einer neuen Klasse organischer Materialien basieren. Da der beobachtete elektrostatische Effekt eine allgemeine Eigenschaft organischer Materialien ist, einschließlich sogenannter „kleiner Moleküle“ und Polymere, kann er dazu beitragen, die Leistungsfähigkeit aller Arten organischer Bauelemente zu verbessern.
Titel der Studie: “Impact of molecular quadrupole moments on the energy levels at organic heterojunctions” (Nature Communications)
Web: https://www.nature.com/articles/s41467-019-10435-2
DOI: 10.1038/s41467-019-10435-2
Autoren: M. Schwarze, K. S. Schellhammer, K. Ortstein, J. Benduhn, C. Gaul, A. Hinderhofer, L. Perdigón Toro, R. Scholz, J. Kublitski, S. Roland, M. Lau, C. Poelking, D. Andrienko, G. Cuniberti, F. Schreiber, D. Neher, K. Vandewal, F. Ortmann, Karl Leo
Über die Computational Nanoelectronics Group
Die Forschungsgruppe am Center for Advancing Electronics Dresden (cfaed) unter Leitung von Dr. Frank Ortmann erforscht elektronische Eigenschaften und Ladungstransporteigenschaften neuartiger Halbleitermaterialien. Hierbei sind organische Halbleiter aktuell ein wichtiger Schwerpunkt der Arbeit, die durch die Deutsche Forschungsgemeinschaft im Rahmen des Emmy Noether-Programms gefördert wird. Die Gruppe ist seit 2017 am cfaed angesiedelt.
Info: https://cfaed.tu-dresden.de/ortmann-home
Pressebilder:
1) Download unter https://cfaed.tu-dresden.de/files/Images/dynamic/press_releases/2019/ortmann_edg-fac_a-b.png
Bildunterschrift: Beispiele für Filmstrukturen, die für die Berechnung der Ladung-Quadrupol-Wechselwirkungsenergie (EQ) von kristallinen Schichten mit vertikaler (a) oder horizontaler (b) Molekül-Ausrichtung verwendet werden. Die Moleküle werden zur Veranschaulichung durch Scheiben dargestellt. Die Längenskala ist in Å angegeben. Für die roten Moleküle an der oberen Filmoberfläche werden EQ-Werte berechnet.
Bildautor: Frank Ortmann
2) Download unter https://cfaed.tu-dresden.de/files/Images/people/research-groups+phds/ortmann-group/frank-ortmann_JL011117378.jpg
Bildunterschrift: Dr. Frank Ortmann, cfaed Independent Research Group Leader
Foto: cfaed / Jürgen Lösel
Pressekontakt:
Prof. Karl Leo
Dresden Integrated Center for Applied Physics and Photonic Materials (IAPP), TU Dresden
E-Mail: karl.leo@iapp.de
Dr. Frank Ortmann
Technische Universität Dresden, Center for Advancing Electronics Dresden
Tel.: +49 (0)351 463 43260
E-Mail: frank.ortmann@tu-dresden.de
Matthias Hahndorf
cfaed, Leitung Wissenschaftskommunikation
Tel.: +49 (0)351 463 42847
E-mail: matthias.hahndorf@tu-dresden.de
Über das cfaed
Zum Exzellenzcluster für Mikroelektronik an der Technischen Universität Dresden gehören elf Forschungsinstitute, darunter die Technische Universität Chemnitz sowie zwei Max-Planck-Institute, zwei Fraunhofer-Institute, zwei Leibniz-Institute und das Helmholtz-Zentrum Dresden-Rossendorf. Auf neun verschiedenen Pfaden forschen rund 300 Wissenschaftler nach neuartigen Technologien für die elektronische Informationsverarbeitung. Sie verwenden dabei innovative Materialien wie Silizium-Nanodrähte, Kohlenstoff-Nanoröhren oder Polymere. Außerdem entwickeln sie völlig neue Konzepte, wie den chemischen Chip oder Herstellungsverfahren durch selbstassemblierende Strukturen, bspw. DNA-Origami. Ziele sind zudem Energieeffizienz, Zuverlässigkeit und das reibungslose Zusammenspiel der unterschiedlichen Bauelemente. Darüber hinaus werden biologische Kommunikationssysteme betrachtet, um Inspirationen aus der Natur für die Technik zu nutzen. Dieser weltweit einzigartige Ansatz vereint somit die erkenntnisgetriebenen Naturwissenschaften und die innovationsorientierten Ingenieurwissenschaften zu einer interdisziplinären Forschungsplattform in Sachsen.
https://cfaed.tu-dresden.de/