cfaed Publications

System Simulation with gem5 and SystemC: The Keystone for Full Interoperability

Reference

Christian Menard, Matthias Jung, Jeronimo Castrillon, Norbert Wehn, "System Simulation with gem5 and SystemC: The Keystone for Full Interoperability" , Proceedings of the IEEE International Conference on Embedded Computer Systems Architectures Modeling and Simulation (SAMOS), pp. 62–69, Jul 2017. [doi]

Abstract

SystemC TLM based virtual prototypes have become the main tool in industry and research for concurrent hardware and software development, as well as hardware design space exploration. However, there exists a lack of accurate, free, changeable and realistic SystemC models of modern CPUs. Therefore, many researchers use the cycle accurate open source system simulator gem5, which has been developed in parallel to the SystemC standard. In this paper we present a coupling of gem5 with SystemC that offers full interoperability between both simulation frameworks, and therefore enables a huge set of possibilities for system level design space exploration. Furthermore, we show that the coupling itself only induces a relatively small overhead to the total execution time of the simulation.

Bibtex

@InProceedings{menard_samos17,
author = {Christian Menard and Matthias Jung and Jeronimo Castrillon and Norbert Wehn},
title = {System Simulation with gem5 and SystemC: The Keystone for Full Interoperability},
booktitle = {Proceedings of the IEEE International Conference on Embedded Computer Systems Architectures Modeling and Simulation (SAMOS)},
year = {2017},
month = jul,
location = {Pythagorion, Greece},
pages = {62--69},
organization = {IEEE},
doi = {10.1109/SAMOS.2017.8344612},
url = {https://ieeexplore.ieee.org/document/8344612/},
isbn = {978-1-5386-3437-0},
abstract = {SystemC TLM based virtual prototypes have become the main tool in industry and research for concurrent hardware and software development, as well as hardware design space exploration. However, there exists a lack of accurate, free, changeable and realistic SystemC models of modern CPUs. Therefore, many researchers use the cycle accurate open source system simulator gem5, which has been developed in parallel to the SystemC standard. In this paper we present a coupling of gem5 with SystemC that offers full interoperability between both simulation frameworks, and therefore enables a huge set of possibilities for system level design space exploration. Furthermore, we show that the coupling itself only induces a relatively small overhead to the total execution time of the simulation.},
}

Downloads

1707_Menard_SAMOS [PDF]

Related Paths

Orchestration Path

Permalink

https://cfaed.tu-dresden.de/publications?pubId=1475


Go back to publications list