About Us

cfaed Chair for Molecular Functional Materials - Group Photo
Chair Group Photo, May 2016 (click to enlarge)

Welcome to the Chair for Molecular Functional Materials. This is a professorship in the context of the cluster of excellence cfaed – “Center for Advancing Electronics Dresden”.

It is headed by Prof. Xinliang Feng.

Chair News

Honorable Mention for the 2017 IUPAC-SOLVAY International Award for Young Chemists

Published on April 5, 2017

The International Union of Pure and Applied Chemistry and Solvay announced the winners of the 2017 IUPAC-Solvay International Award for Young Chemists, presented for the best Ph.D. theses in the chemical sciences, as described in 1000-word essays.
There were 34 applications from individuals receiving their Ph.D. degrees from institutions in 19 countries. The award selection committee, chaired by Dr. Mark C. Cesa, IUPAC Past President, comprised members of the IUPAC Bureau and a senior science advisor from Solvay, all of whom have a wide range of experience in chemistry.
Dr. Junzhi Liu is one of the recipients of the Honorable Mention for the 2017 IUPAC-Solvay International Award for Young Chemists, which acknowledges the best PhD thesis in chemical science.
The recipients of Honorable Mention will receive a copy of the IUPAC History bookset.

Link to: IUPAC



cfaed Successfully Presented at 'Graphene2017' in Barcelona - Next Year's Conference Will be Held in Dresden

Published on April 4, 2017

With the support of the cfaed team, Prof. Xinliang Feng's Chair for Molecular Functional Materials was able to successfully present the Cluster with its own booth at the largest European graphene conference
in Barcelona. For four days, representatives of the areas atomic precision (Reinhard Berger), energy storage and transformation (Xiaodong Zhuang), and production and innovation (Martin Lohe) were in close
contact with numerous visitors.
Many questions about the properties and possible applications of graphene and nanographene strips were discussed. In the closing session of the conference, a big success could be publicly announced:
We are pleased to reveal that the 'Graphene 2018' will take place in Dresden!



Link to: Press release



Coordination Polymer Framework-Based On-Chip Micro-Supercapacitors with AC Line-Filtering Performance

April 4, 2017

On-chip micro-supercapacitors (MSCs) are important Si-compatible power source backups for miniaturized electronics, owing to their rapid energy-harvesting features, burst-mode power delivery,
and in particular the good compatibility with Si. However, current on-chip MSCs require harsh processing conditions (high-temperature fabrication, oxygen plasma and wet-chemistry etching, etc.),
and typically perform like resistors when filtering ripples from alternating current (AC). Therefore, the development of Si-compatible MSCs with facile fabrication procedure is an urgent task for
their practical applications.
Recently, Prof. Xinliang Feng, Dr. Enrique Cánovas, Dr. Xiaodong Zhuang firstly reported an on-chip MSC based on a coordination polymer framework (PiCBA) by using a facile layer-by-layer strategy. Owing to
the good carrier mobility (5 × 10-3 cm2•V-1•s-1) of PiCBA, strong interaction between PiCBA and patterned Au current collectors, and in-plane geometry, the as-fabricated MSCs delivered high specific capacitances
of up to 34.1 F•cm-3 at 50 mV•s-1, a volumetric power density of 1323 W•cm-3 and an energy density of 4.7 mWh•cm-3. Moreover, the fabricated MSCs exhibited typical AC line-filtering performance (-73° at 120 Hz)
with a short resistance-capacitance constant of ~0.83 ms, which is well comparable to the state-of-art MSCs. This study not only provides a general, easy method for the preparation of on-chip MSCs, but also
demonstrates the remarkable energy storage potential of coordination polymer frameworks.



Figure. a-c) Schematic illustration of LBL fabrication of PiCBA films on Au interdigital electrodes; e) Impedance phase angle on the frequency for the PiCBA-based microdevices; f) Impedance phase angle
on the frequency for the PiCBA-based microdevices; g) Calculated quantum capacitance based on the two bands crossing the Fermi level for zero disorder, and charge density of the lower band crossing the Fermi
level at the G point as well as close to the Brillouin zone boundary at X, namely k = (0.4, 0.0, 0.0).

C. Yang, K. S. Schellhammer, F. Ortmann, S. Sun, R. Dong, M. Karakus, Z. Mics, M. Löffler, F. Zhang, X. Zhuang,* E. Cánovas,* G. Cuniberti, M. Bonn, X. Feng*
Coordination Polymer Framework Based On-Chip Micro-Supercapacitors with AC Line-Filtering Performance
Angew. Chem. Int. Ed. 2017, 56, 3920-3924. [DOI: 10.1002/anie.201700679] [very important paper]

Link to: Angewandte Chemie




Guest lecture - Prof. Hossam Haick, Technion - Israel Institute of Technology, Israel

March 24, 2017


Speaker: Prof. Hossam Haick, Technion - Israel Institute of Technology, Israel

Date/Time: Tuesday, April 11, 2017, 09:30 am - 10:30 am

Location: TU Dresden, Walther-Hempel-Building, HEM 219 seminar room (second floor)

Topic: Novel Alliance between Advanced Materials and Volatile Biomarkers for Non-Invasive Medical Evaluation



Click here for more information




Highly Stable Open-Shell Nanographenes with a Saddle-Shaped Geometry

February 16, 2017

Open-shell nanographenes (or polycyclic hydrocarbons) have attracted a great deal of interest because of their unique nonlinear optical, electronic and magnetic properties, making them promising candidates for organic electronic and spintronic devices. However, it is the intrinsic instability of the biradical species that limits the practicality of this research. The scientists from Dresden University of Technology (Prof. Xinliang Feng) reported the synthesis of the first example of highly stable open-shell nanographenes with a saddle-shaped p-conjugated geometry. The achieved saddle-shaped nanographenes exhibits an open-shell singlet biradical structure (biradical index: y = 0.69) in the ground state with a narrow optical energy gap of 0.92 eV. More importantly, the title nanographene displays excellent stability at air and sun light conditions, with the half-life time (t1/2) as long as 39 days. The synthetic concept reported in this work introduces new perspectives on the accessibility of high-spin graphene-like moleculae with a view towards potential materials applications in organic spintronics. The related works are published in Angewandte Chemie, for more details please click the link: http://dx.doi.org/10.1002/anie.201611689.
This work was financially supported by ERC grants on 2DMATER, the EC under Graphene Flagship (No. CNECT-ICT-604391), Center for Advancing Electronics Dresden (cfaed), European Social Fund and the Federal State of Saxony (ESF-Project “GRAPHD”, TU Dresden).
Literature: Ji Ma, Junzhi Liu*, Martin Baumgarten, Yubin Fu, Yuan-Zhi Tan, Karl Sebastian Schellhammer, Frank Ortmann, Gianaurelio Cuniberti, Hartmut Komber, Reinhard Berger, Klaus Müllen and Xinliang Feng*. Angew. Chem. Int. Ed. 2017, 56, DOI: 10.1002/anie.201611689.




Link to: Angewandte Chemie


Persulfurated Coronene: A New Generation of “Sulflower”

February 12, 2017

Currently, fully sulfur-substituted polycyclic aromatic hydrocarbons (PAHs) carrying fused disulfide bonds at the periphery have not yet been achieved. Here, Cfaed scientists at TU Dresden with collaborators report the first synthesis of a persulfurated PAH as a next-generation “sulflower.” In this novel PAH, disulfide units establish an all-sulfur periphery around a coronene core (C24S12). The structure, electronic properties, and redox behavior were investigated by microscopic, spectroscopic and electrochemical methods and supported by density functional theory (DFT). The sulfur-rich character of persulfurated coronene renders it a promising cathode material for lithium-sulfur batteries, displaying a high capacity of 520 mAh g-1 after 120 cycles at 0.6 C with a high-capacity retention of 90%. The protocol established in this work offers unique access to larger PAHs and graphene (or graphene nanoribbons) with persulfurated edges and paves the way toward promising applications in OFETs, OPVs, energy, and superconductor-related areas.




Link to: JACS


Stimulus-Responsive Micro-Supercapacitors

December 6, 2016

Smart micro-/nano-devices or stimuli-responsive devices have attracted substantial attention due to a wide range of needs for smart modern electronics. Nevertheless, it remains a great challenge to integrate various kinds of stimuli into modern functional devices without sacrificing the device performance, most probably due to the poor compatibility among those stimuli, active materials, and processing technologies. The scientists from Dresden University of Technology (Prof. Xinliang Feng) and Chemnitz University of Technology (Prof. Oliver G. Schmidt) reported the fabrication of the first stimulus-responsive micro-supercapacitor (SR-MSC) with ultrahigh volumetric energy density (20 mWh cm-3 at 235 W cm-3) and reversible electrochromic effect by employing vanadium pentoxide and electrochemical exfoliated graphene-based hybrid nanopaper and viologen as electrode and stimulus-responsive material, respectively. The fabricated high performance SR-MSCs offer new opportunities for intuitively observing the working state of energy devices without the aid of extra equipment and techniques.
This work was financially supported by the German Research Foundation (DFG) within the Cluster of Excellence “Center for Advancing Electronics Dresden” (cfaed) and the Initiative and Networking Fund of the German Helmholtz Association, Helmholtz International Research School for Nanoelectronic Networks NanoNet (VH-KO-606), ERC Grant on 2DMATER, UP-GREEN, and EU Graphene Flagship.

Literature: [1] Panpan Zhang, Feng Zhu, Faxing Wang, Jinhui Wang, Renhao Dong, Xiaodong Zhuang,* Oliver G. Schmidt, and Xinliang Feng*, Stimulus-Responsive Micro-Supercapacitors with Ultrahigh Energy Density and Reversible Electrochromic Window, Adv. Mater. 2017, in press. [DOI: 10.1002/adma.201604491].




Wafer-sized multifunctional polyimine-based two-dimensional conjugated polymers with high mechanical stiffness

November 16, 2016

Two-dimensional (2D) soft materials have attracted increasing attention in chemistry, materials science, nanotechnology and biology due to their fascinating optical, electrical, mechanical and magnetic properties derived from the reduction of dimensions. One of the key challenges in 2D materials is to go beyond graphene, a prototype 2D polymer (2DP), and to synthesize its organic analogues with structural control at the atomic- or molecular-level. Here, Cfaed scientists at TU Dresden, reported the successful preparation of porphyrin containing monolayer and multilayer crystalline conjugated 2DPs through the Schiff-base polycondensation reaction at an air-water and liquid-liquid interface. The monolayer 2DP has a thickness of 0.7 nm with a lateral size of 4-inch wafer, and has a Young’s modulus of 267±30 GPa, which is on the same order of graphene (200-1000 GPa). The 2DP has an optical band gap of 1.4 eV and the monolayer 2DP can function as an active semiconducting layer in a thin film transistor and electrocatalyst towards water splitting. This work opens the door for the synthesis of functional 2DPs using reversible polycondensation reaction, which may pave the way for the rational synthesis of 2D organic soft materials for next generation electronics and energy-related applications.



Nature Communications


Link to: Nature Communications


EU Graphene Flagship Meeting

November 3 & 4, 2016

On November 3rd and 4th a meeting of the EU Graphene Flagship with 31 participants from 18 different European institutes and companies took place at TU Dresden. The purpose of the meeting of the Flagship Work Package 13 on Functional Foams and Coatings led by Professor Xinliang Feng was to discuss recent progress and future perspectives in the field of graphene and related 2D materials. The special focus was their use in coatings, thin films and porous structures like foams and membranes for applications such as energy storage and conversion, catalysis, water remediation and environmental protection.


CFAED Distinguished Lecture Series - Nobel Prize Laureate Professor Sir Konstantin S. Novoselov FRS, University of Manchester, UK

September 16, 2016


Speaker: Professor Sir Konstantin S. Novoselov FRS, University of Manchester, UK

Date/Time: September 16, 2016, 4:00 pm - 5:00 pm

Location: TU Dresden, Dülfersaal

Topic: Materials in the Flatland


Professor Sir Konstantin S. Novoselov 


Click here for more information



Atom-thick solution to energy storage conundrum

September 12, 2016

Sheets of carbon an atom thick could soon double the amount of electricity stored in smartphone batteries, researchers believe, as 2D materials present a picture of the future of energy storage.

The transition from fossil fuels to renewable energy, combined with the increasing power of today’s portable devices, calls for cheap materials that can store electricity on an unprecedented scale. Researchers are exploring the extraordinary characteristics of two-dimensional nanomaterials to achieve this goal. According to Professor Xinliang Feng, at the Technical University Dresden, Germany, confining the thickness of materials to nanoscopic dimensions can endow them with exciting physical and chemical properties. This is because, at small scales, electrons obey the exotic laws of quantum mechanics. They spread like waves, exist in multiple places at the same time, and engage in all manner of activities that contradict our experience in the macroscopic world. Prof. Feng is trying to put quantum effects to work in cheaper and more powerful energy storage technologies. Already atomically thin layers of carbon, known as graphene, are helping researchers squeeze more electricity out of conventional lithium-ion batteries. The negative electrode of these batteries is commonly made of bulk carbon. Each lithium ion stores energy by fixing itself to this electrode, typically by bonding with six carbon atoms on its surface. Because graphene is so thin, the lithium ions only need three carbon atoms to hold them in place. This doubles the amount of energy that can be stored in a given size of battery.

Read full article: Horizon - The EU Research & Innovation Magazine


Joint Kick-Off Event ESF „Graphene Center Dresden“ and 2.5D-Path of the Center for Advancing Electronics Dresden (cfaed)

September 07, 2016

On September 7th, the official start of the ESF-supported Young Researcher Group ‘Graphene Center Dresden’ (GraphD) took place at TU Dresden. In addition, the initiation of a new path dedicated to two dimensional materials within the Cluster of Excellence Center for Advancing Electronics Dresden (cfaed) was celebrated with the participation of very distinguished guests. The Graphene Center Dresden is an ESF Young Researcher Group, funded by the European Social Fund (ESF), with strong collaboration of many chairs within TU Dresden under the supervision of cfaed’s Strategic Professorship ‘Molecular Functional Materials’ of Prof. Xinliang Feng. Cooperation partners include, e.g., Prof. Sibylle Gemming, Prof. Alexander Eychmüller, Prof. Stefan Kaskel, Prof. Karl Leo, Prof. Stefan Mannsfeld, Prof. Michael Schröter, Prof. Gotthard Seifert as well as Prof. Gianaurelio Cuniberti. All hold important functions within cfaed as research path leaders and principal investigators. With this joint competence, TU Dresden will emerge as one of the most important European actors in the field of the “wonder material” graphene and related two-dimensional materials. These one-atom thin materials exhibit outstanding physical properties, which render them promising candidates for application in various fields of electronic and energy applications as well as, for instance, novel lubricants. Meanwhile, graphene has been implemented in the first industrial applications. This is also one of the core competences of the Graphene Center Dresden: The close relationship to industrial partners is an elementary part of its strategy. The recently started ESF young researcher group ‘GraphD’ is an important milestone, funded by the European Social Fund (ESF). GraphD started on July 1st and consists of three postdocs, six PhD students, and the research group leader Dr. Reinhard Berger. Aims of the group are, amongst others, to attract the world’s most renowned young scientists in the field, train outstanding experts for Saxony’s industry, enforce the innovation potential of local companies, and to efficiently complement the regional cluster of ‘Silicon Saxony’. The Center for Advancing Electronics Dresden currently prepares a proposal within the ‘Excellence Strategy’ of the German Federal and State governments. It’s program will be extended to include research of two-dimensional materials within a new ‘2.5D-path’.


Joint Kick-Off Event ESF „Graphene Center Dresden“ and 2.5D-Path of the Center for Advancing Electronics Dresden (cfaed)

 All photos: cfaed / Katharina Knaut


Press contact:

Professor Xinliang Feng
Technische Universität Dresden
Chair of Molecular Functional Materials
Center for Advancing Electronics Dresden (cfaed)
Phone: +49 351 463-43251
E-mail: xinliang.feng@tu-dresden.de

Matthias Hahndorf
Center for Advancing Electronics Dresden (cfaed)
Public Relations
Phone: +49 (0)351 463 42847
E-mail: matthias.hahndorf@tu-dresden.de


Press Images:

Joint Kick-Off Event ESF „Graphene Center Dresden“ and 2.5D-Path of the Center for Advancing Electronics Dresden (cfaed)



Two-Dimensional Mesoscale-Ordered Conducting Polymers

September 07, 2016

Despite the availability of numerous two-dimensional (2D) materials with structural ordering at the atomic or molecular level, direct construction of mesoscale-ordered superstructures within a 2D monolayer remains an enormous challenge. Here, cfaed scientists at TU Dresden with collaborators, report the synergic manipulation of two types of assemblies in different dimensions to achieve 2D conducting polymer nanosheets with structural ordering at the mesoscale. The resulting polyaniline nanosheets feature mesoscale-ordered hexagonal pore arrays, tunable morphologies and pore sizes, large specific surface area as well as anisotropic and record-high electrical conductivity. Such moldable approach creates a new family of mesoscale-ordered structures as well as opens avenues to the programmed assembly of multifunctional materials.


Angewandte Chemie_Two-Dimensional Mesoscale-Orderes Conducting Polymers


Link to: Angewandte Chemie Int. Ed.

Highlighted by Nature Reviews Materials




Synthesis of NBN-type Zigzag-Edged Polycyclic Aromatic Hydrocarbons: 1,9-Diaza-9a-boraphenalene as a Structural Motif

August 31, 2016

A novel class of dibenzo-fused 1,9-diaza-9a-boraphenalenes featuring zigzag edges with a nitrogen-boron-nitrogen bonding pattern named NBN-dibenzophenalenes (NBN-DBPs) has been synthesized. Alternating nitrogen and boron atoms imparts high chemical stability to these - else very reactive -zigzag-edged polycyclic aromatic hydrocarbons (PAHs). Upon oxidation, an open-shell intermediate is formed corroborated by spectroscopic calculations and in-situ spectroelectrochemistry. The oxidized nitrogen-boron-nitrogen subunit is isoelectronic to the pristine carbon zigzag periphery but also positively charged. This new synthetic strategy represents an efficient pathway towards NBN-doped zigzag-edged graphene nanoribbons.

DOI: 10.1021/jacs.6b04445


Synthesis of NBN-type Zigzag-Edged Polycyclic Aromatic Hydrocarbons: 1,9-Diaza-9a-boraphenalene as a Structural Motif


Link to: JACS - Journal of the American Chemical Society



Prof. Xinliang Feng has served as the organizer of the Graphene Flagship EU-Korea Workshop on Graphene and related 2D Materials

August 16, 2016

Prof. Xinliang Feng has served as the organizer of the Graphene Flagship EU-Korea Workshop on Graphene and related 2D Materials. The workshop took place in Copenhagen, Denmark from August 15 - 16, 2016. The purpose of the EU-Korea workshop is to exchange experiences, practices and ideas related to the current and emerging topics associated with the basic chemistry approach, materials synthesis, application development and commercialisation for graphene and related 2D materials. In addition, the aim is to explore further possibilities for collaborative research opportunities between researchers in Europe and Korea. This workshop is a follow up of the first EU-Korea workshop held in Busan (Republic of Korea) in 2015.

Link to: Graphene Flagship - EU-Korea Workshop



Chemical approaches to 2D materials

August 12, 2016

[...] Issue 29/2016 of Advanced Materials is a special issue of on chemical approaches to 2D materials, guest edited by Paolo Samorì, Vincenzo Palermo, and Xinliang Feng, which provides a state-of-the-art description of the most enlightening results regarding various chemical approaches to 2D materials, written by some among the most creative scientists in the field.[...]


Chemical approaches to 2D materials


Link to: Materials Views



Guest lecture - Prof. josef Michl, University of Colorado Boulder, USA

August 12, 2016, 10:00 pm - 11:30 pm, CHE091

Speaker: Prof. Josef Michl (University of Colorado Boulder, USA)

Date/Time: August 12, 2016; 10:00 am - 11:30 am

Location: TUD, CHE091, New Chemistry Building

Topic: Direct Alkylation of Gold Surfaces with Solutions of Organometallics


Prof. Josef Michl 


 Lecture Prof. Josef Michl



A New Bowl-shaped Subunit of Fullerene C70

June 29, 2016

Total synthetic approaches of fullerenes are a holy grail for organic chemistry. So far, the main attempts have been focused on the synthesis of the buckminsterfullerene C60. In contrast, access to subunits of the homologue C70 remains challenging. Here, we demonstrate an efficient bottom-up strategy towards a novel bowl-shaped polycyclic aromatic hydrocarbons (PAH) C34 with two pentagons. This PAH represents a subunit for C70 and also of other higher fullerenes. The bowl-shaped structure was unambiguously determined by X-ray crystallography. Especially, a bowl-to-bowl inversion for a C70 fragment in solution was investigated by dynamic NMR analysis, showing a bowl-to-bowl inversion energy (ΔG‡) of 16.7 kcal mol-1, which is further corroborated by DFT calculations.


A New Bowl-shaped Subunit of Fullerene C70


Link to: ACS Publications JACS



Guest lecture - Prof. Felix R. Fischer, University of California Berkeley

May 25, 2016, 1:30 pm - 3:00 pm, HEM 219

Speaker: Prof. Felix R. Fischer (University of California Berkeley)

Topic: Teaching Polymers the Meaning of Life & Quantum Confinement in Graphene Nanostructures




Icon PDF Lecture Prof. Felix R. Fischer



Guest lecture - Prof. Di Zhang

May 10, 2016

Speaker: Prof. Di Zhang (Shanghai Jiaotong University)

Topic: Bioinspired Materials Templated from Nature Species


Topical Workshop on Graphene and Nanoscience held in Dresden

published April 25 2016

On Monday, April 25, 2016 Prof. Xinliang Feng (cfaed / Chair for Molecular Functional Materials) welcomed a delegation of 20 people from the Chinese Graphene Industrial Alliance (CGIA) in Dresden. A workshop on graphene and nanoscience was organized including the top scientific and industrial experts from TU Dresden, Leibniz Institute for Polymer Research Dresden (Leibnitz-IPF), and Chinese representatives from industry and science. TUD’s vice-rector for research Prof. Gerhard Rödel held the welcoming speech and introduced the university to the guests from China. During the workshop, Prof. Karl Leo (Chair for Optoelectronics) represented the Center for Advancing Electronics Dresden (cfaed) and Institute for Applied Photophysics (IAPP) and Dr. Martin Lohe (Chair for Molecular Functional Materials) informed about the latest developments in graphene production. The delegation of the CGIA informed about their activities in regards to graphene commercialization. Since China has emerged to be a key player not only in terms of industrial aspects but also regarding the outstanding scientific development, the purpose of the workshop was to lay the foundations for the future cooperation between TU Dresden and China.


Workshop Program (PDF) 


Group shot                Group shot


Link to: https://www.chm.tu-dresden.de


Graphene nanoribbons: it's all about the edges

published 24 Mar 2016

When electrons spin differently Graphene nanoribbons: it's all about the edges.
As reported by the journal Nature in its latest issue, researchers from Empa, the Max Planck Institute in Mainz and the Technical University of Dresden have for the first time succeeded in producing graphene nanoribbons with perfect zigzag edges from molecules. Electrons on these zigzag edges exhibit different (and coupled) rotational directions ("spin"). This could make graphene nanoribbons the material of choice for electronics of the future, so-called spintronics.

For further information see PDF Press Release (English) -> Click
For further information see PDF Press Release (German) -> Click


Graphene Nanoribbons                Graphene nanoribbons


Graphene slides smoothly across gold

published 26 Feb 2016

Graphene, a modified form of carbon, offers versatile potential for use in coating machine components and in the field of electronic switches. An international team of researchers led by physicists at the University of Basel, and including TU Dresden (Dr. Andrea Benassi and Dr. Xinliang Feng) have been studying the lubricity of this material on the nanometer scale. Since it produces almost no friction at all, it could drastically reduce energy loss in machines when used as a coating, as the researchers report in the journal Science. In future, graphene could be used as an extremely thin coating, resulting in almost zero energy loss between mechanical parts. This is based on the exceptionally high lubricity—or so-called superlubricity—of modified carbon in the form of graphene. Applying this property to mechanical and electromechanical devices would not only improve energy efficiency but also considerably extend the service life of the equipment. Fathoming out the causes of the lubricant behavior An international community of physicists have studied the above-average lubricity of graphene using a two-pronged approach combining experimentation and computation. To do this, they anchored two-dimensional strips of carbon atoms—so-called graphene nanoribbons—to a sharp tip and dragged them across a gold surface. Computer-based calculations were used to investigate the interactions between the surfaces as they moved across one another. Using this approach, the research team is hoping to fathom out the causes of superlubricity; until now, little research has been carried out in this area. By studying the graphene nanoribbons, the researchers hope to learn about more than just the slip behavior. Measuring the mechanical properties of the carbon-based material also makes sense because it offers excellent potential for a whole range of applications in the field of coatings and micromechanical switches. In future, even electronic switches could be replaced by nanomechanical switches, which would use less energy for switching on and off than conventional transistors. The experiments revealed almost perfect, frictionless movement. It is possible to move graphene nanoribbons with a length of 5 to 50 nanometers using extremely small forces (2 to 200 piconewtons). There is a high degree of consistency between the experimental observations and the computer simulation. A discrepancy between the model and reality appears only at greater distances (five nanometers or more) between the measuring tip and the gold surface. This is probably because the edges of the graphene nanoribbons are saturated with hydrogen, which was not accounted for in the simulations. "Our results help us to better understand the manipulation of chemicals at the nano level and pave the way for creating frictionless coatings," write the researchers.


Graphene slides smoothly across gold


 Linkt to: www.science.org


Patterning two-dimensional free-standing surfaces with mesoporous conducting polymers

published 30 Nov 2015

The ability to pattern functional moieties with well-defined architectures is highly important in material science, nanotechnology and bioengineering. Although two-dimensional surfaces can serve as attractive platforms, direct patterning them in solution with regular arrays remains a major challenge. Here, cfaed scientists at TU Dresden with collaborators, developed a versatile route to pattern two-dimensional free-standing surfaces in a controlled manner assisted by monomicelle close-packing assembly of block copolymers, which is unambiguously revealed by direct visual observation. This strategy allows for bottom-up synthesis of two-dimensional mesoporous conducting polymer nanosheets with adjustable mesopores on various functional free-standing surfaces, including two-dimensional graphene, molybdenum sulfide, titania nanosheets, and even on one-dimensional carbon nanotubes. This approach will shed light on developing solution-based soft patterning of given interfaces towards bespoke functions.



Link to: http://www.nature.com



Prof. Xinliang Feng Raises "Proof of Concept" Sponsorship from European Research Council

published 24 Nov 2015

Two scientists of TU Dresden succeeded in the second call for proposals of the European Research Council, “Proof of Concept Grants”. One of them is cfaed's Strategic Professor Xinliang Feng who has been honored for his project concerning electrochemical delamination of graphite. The honored scientists will now receive a sponsorship up to 150.000 Euros, which will contain a study about the viability of commercial utilization of the excellent research results. To apply for the sponsorship it was required that the scientists and projects had already been promoted by ERC. With the 'Proof of Concept Grant' the ERC wants to make a contribution to growth and innovation in the European Union.

Read this news in German on the page of Saxony Liaison Office Brussels

"Nanocarbons for Advanced Energy Conversion" Volume 2 edited by Prof. Xinliang Feng

published 22 Oct, 2015

Wiley has published the book "Nanocarbons for Advanced Energy Conversion" which has been edited by Prof. Xinliang Feng. The book is the volume 2 of the book series on nanocarbons for advanced applications.

picture 3527336664_wiley_book.jpg


Link to: http://eu.wiley.com


Radical assisted electrochemical exfoliation

published 17 Oct, 2015

Despite the intensive research efforts devoted to graphene fabrication over the last decade, the production of high-quality graphene on a large scale, at an affordable cost and in a reproducible manner still represents a great challenge. Cfaed scientists with collaborators report a novel method based on the controlled electrochemical exfoliation of graphite in aqueous ammonium sulfate electrolyte to produce graphene in large quantities and with outstanding quality. The developed exfoliation method results in large graphene sheets (5-10 µm on average), which exhibit outstanding hole mobilities (~405 cm2 V-1 s-1), very low Raman ID/IG ratios (below 0.1), and extremely high carbon to oxygen (C/O) ratios (~25.3). Moreover, the graphene ink prepared in dimethylformamide qualifies this material for intriguing applications such as transparent conductive films and flexible supercapacitors. In general, this robust method for electrochemical exfoliation of graphite offers great promise for the preparation of graphene that can be utilized in industrial applications to create integrated nanocomposites, conductive or mechanical additives as well as energy storage and conversion devices.

picture jacs.png

Link to: http://pubs.acs.org


Highly Cited Researcher

published 21 Sept 2015

Prof. Dr. Xinliang Feng was listed as highly cited researcher in 2015 (published by Thompson Reuters) for both categories - chemistry and materials science.

Link to: http://highlycited.com/

Temperature-Dependent Multidimensional Self-Assembly of Polyphenylene-Based “Rod-Coil” Graft Polymers

published 7 Sept 2015

cfaed scientists at TU Dresden with collaborators demonstrate a novel type of “rod−coil” graft copolymer containing a polyphenylene backbone linked with poly(ethylene oxide) (PEO) side chains. Such graft copolymers manifest unprecedented temperature-dependent one-dimensional (1D) and two-dimensional (2D) self-assembly in solution. At 20°C, which is higher than the crystallization temperature (Tc) of the PEO chains, the achiral graft copolymers self-organize into nanoribbons that twist into 30 μm ultralong helices with controlled pitch depending on the grafting ratio of the PEO chains. At 10°C, which is lower than the Tc, quadrangular multilayer sheets of over 10 μm in lateral size are obtained. This work presents the first example of controlled self-assembly of graft polymers into 1D helix and 2D sheet superstructures. Such graft polymers provide new opportunities for the controlled preparation of 1D helix and 2D superstructures as well as offer a new system for the fundamental studies on the self-assembly of conjugated polymers, including morphological control, thermodynamics and kinetics, potential applications, etc.

View Publication online: http://pubs.acs.org/doi/abs/10.1021/jacs.5b07487

Synthetic two-dimensional conjugated supramolecular polymers (2DSPs) open new application in electrocatalysis

published 7 Sept 2015

Two-dimensional polymers and supramolecular polymers refer to laterally infinite, one monomer-unit thick, free-standing network with a defined internal periodicity based on covalent and non-covalent bond, respectively. They represent a new class of artificially created 2D materials with a manifold of promises in electronics, membrane technology, catalysis, sensing, and energy storage and conversion. Here, cfaed scientists at TU Dresden, reported the synthesis of  a large-area (mm2) crystalline 2DSP with a thickness of ∼ 0.7 nm, comprising triphenylene-fused nickel bis(dithiolene) complexes, at an air/water interface of Langmuir-Blodgett trough under ambient conditions. Such 2DSP, processed on a glassy carbon electrode, exhibited excellent electrocatalytic activity for hydrogen evolution reaction from water with a Tafel slope of 80.5 mV decade-1 and an operating overpotential of 333 mV at 10 mA cm-2, which are superior to those of carbon nanotube (CNT)-supported molecular catalysts and heteroatom-doped graphene catalysts. This work opens the door for developing large-area, free-standing 2D organic materials consisting of immobilized molecular catalysis as novel electrode materials bearing functions in energy technologies.

synthesis 2dsps


cfaed Seminar Series: Minisymposium on Graphene Materials

published 9 Jul 2015

On Wednesday, 15 July 2015, 15:00 - 17:00 we will hold a Minisymposium on Graphene Materials.
Beginning at 3 p.m. Prof Hui-Ming Cheng (Chinese Academy of Sciences) is going to give a talk titled “Graphene Materials: Large-Scale Fabrication and Application Explorations”.
Beginning at 4 p.m., Prof. Shi-Zhang Qiao (University of Adelaide, Australia) is going to give a talk titled “Metal-free and Non-precious Metal Materials for Energy-relevant Electrocatalytic Processes”.

Location: TU Dresden, New Chemistry Building, Lecture Theatre CHE S89, Bergstraße 66, 01069 Dresden

See full announcement and CVs

cfaed Seminar Series: Prof. Maurizio Prato

published 9 Jul 2015

Prof. Maurizio Prato

We are happy to welcome Prof. Maurizio Prato (Università degli Studi di Trieste, Italy) on 13 July 2015 for a talk at our chair! Prof. Prato will speak about "Synergies between chemistry and nanotechnology: applications to neurosciences and energy".
Time: 4 pm
Location: TU Dresden, Hempel-Building, Seminar Room HEM 219 , Mommsenstraße 4 , 01069 Dresden
See abstract and short CV / download it: application/pdf 20150713_cfaedSeminarSeries_Prato.pdf (158.2 KiB)

Fellow of the Royal Society of Chemistry

published 26 Nov 2014

In November 2014, Prof. Dr. Xinliang Feng has been appointed a Fellow of the Royal Society of Chemistry, UK. The honor is given to researchers who have made outstanding contributions to the advancement of chemical science.
The Royal Society of Chemistry has more than 49,000 members worldwide. The largest chemical society in Europe, the organization works to promote the development, practice and application of the chemical sciences across the world. In particular, the society encourages the participation of students and young people in chemistry.

New Certificate: "Highly Cited Researcher"

published Oct 2014

Prof. Xinliang Feng appears in the 2014 “highly cited researcher” list published by Thompson Reuters. This prestigious list includes scientific researchers whose publications have been cited most often in academic journals over the past decade and rank among the top 1 % most cited for their subject field and year of publication. Those listed are identified as being among the world’s leading scientific minds, along with the universities and institutions which employ them.