cfaed Publications

A Novel Hybrid DRAM/STT-RAM Last-Level-Cache Architecture for Performance, Energy and Endurance Enhancement

Reference

Fazal Hameed, Jeronimo Castrillon, "A Novel Hybrid DRAM/STT-RAM Last-Level-Cache Architecture for Performance, Energy and Endurance Enhancement", In IEEE Transactions on Very Large Scale Integration Systems (TVLSI), vol. 27, no. 10, pp. 2375-2386, Oct 2019. [doi]

Abstract

High capacity L4 architectures as Last-Level-Cache (LLC) have been recently introduced between L3-SRAM and off-chip memory. These LLC architectures have either employed DRAM or Spin-Transfer-Torque (STT-RAM) memory technologies. It is a known fact that DRAM LLCs feature a higher energy consumption while STT-RAM LLCs feature a lower write endurance compared to their counterparts. This paper proposes an efficient hybrid DRAM/STT-RAM LLC architecture that exploits the best characteristics offered by the individual memory technologies while mitigating their drawbacks. More precisely, we introduce a novel mechanism for the storage and management of the hybrid LLC tags, and a proactive L3-SRAM writeback policy that combines multiple dirty blocks that are mapped to the same LLC row. Our hybrid architecture reduces LLC interference by having less writeback accesses and row fetches. The endurance is improved by reducing the number of STT-RAM block writes. We show that our LLC architecture reduces the total number of STT-RAM block writes by 78% and improves the average performance by 13% compared to a recently proposed STT- RAM LLC. Compared to the state-of-the-art DRAM LLC, we report an average energy and performance improvement of 24% and 17.1% respectively.

Bibtex

@Article{hameed_tvlsi19,
author = {Fazal Hameed and Jeronimo Castrillon},
title = {A Novel Hybrid {DRAM}/{STT-RAM} {L}ast-{L}evel-{C}ache Architecture for Performance, Energy and Endurance Enhancement},
journal = {IEEE Transactions on Very Large Scale Integration Systems (TVLSI)},
year = {2019},
month = oct,
abstract = {High capacity L4 architectures as Last-Level-Cache (LLC) have been recently introduced between L3-SRAM and off-chip memory. These LLC architectures have either employed DRAM or Spin-Transfer-Torque (STT-RAM) memory technologies. It is a known fact that DRAM LLCs feature a higher energy consumption while STT-RAM LLCs feature a lower write endurance compared to their counterparts. This paper proposes an efficient hybrid DRAM/STT-RAM LLC architecture that exploits the best characteristics offered by the individual memory technologies while mitigating their drawbacks. More precisely, we introduce a novel mechanism for the storage and management of the hybrid LLC tags, and a proactive L3-SRAM writeback policy that combines multiple dirty blocks that are mapped to the same LLC row. Our hybrid architecture reduces LLC interference by having less writeback accesses and row fetches. The endurance is improved by reducing the number of STT-RAM block writes. We show that our LLC architecture reduces the total number of STT-RAM block writes by 78\% and improves the average performance by 13\% compared to a recently proposed STT- RAM LLC. Compared to the state-of-the-art DRAM LLC, we report an average energy and performance improvement of 24\% and 17.1\% respectively.},
volume = {27},
number = {10},
pages = {2375-2386},
numpages = {12pp},
doi={10.1109/TVLSI.2019.2918385},
url = {https://ieeexplore.ieee.org/document/8734763},
}

Downloads

1905_Hameed_TVLSI [PDF]

Related Paths

Orchestration Path

Permalink

https://cfaed.tu-dresden.de/publications?pubId=2454


Go back to publications list