cfaed Publications

ConDRust: Scalable Deterministic Concurrency from Verifiable Rust Programs

Reference

Felix Suchert, Lisza Zeidler, Jeronimo Castrillon, Sebastian Ertel, "ConDRust: Scalable Deterministic Concurrency from Verifiable Rust Programs", In Proceeding: 37th European Conference on Object-Oriented Programming (ECOOP 2023) (Ali, Karim and Salvaneschi, Guido), Schloss Dagstuhl – Leibniz-Zentrum für Informatik, vol. 263, pp. 33:1–33:39, Dagstuhl, Germany, Jul 2023. (ECOOP 2023 Distinguished Artifact Award) [doi]

Abstract

SAT/SMT-solvers and model checkers automate formal verification of sequential programs. Formal reasoning about scalable concurrent programs is still manual and requires expert knowledge. But scalability is a fundamental requirement of current and future programs.

Sequential imperative programs compose statements, function/method calls and control flow constructs. Concurrent programming models provide constructs for concurrent composition. Concurrency abstractions such as threads and synchronization primitives such as locks compose the individual parts of a concurrent program that are meant to execute in parallel. We propose to rather compose the individual parts again using sequential composition and compile this sequential composition into a concurrent one. The developer can use existing tools to formally verify the sequential program while the translated concurrent program provides the dearly requested scalability.

Following this insight, we present ConDRust, a new programming model and compiler for Rust programs. The ConDRust compiler translates sequential composition into a concurrent composition based on threads and message-passing channels. During compilation, the compiler preserves the semantics of the sequential program along with much desired properties such as determinism.

Our evaluation shows that our ConDRust compiler generates concurrent deterministic code that can outperform even non-deterministic programs by up to a factor of three for irregular algorithms that are particularly hard to parallelize.

Bibtex

@InProceedings{suchert_ecoop23,
author = {Felix Suchert and Lisza Zeidler and Jeronimo Castrillon and Sebastian Ertel},
booktitle = {37th European Conference on Object-Oriented Programming (ECOOP 2023)},
title = {{ConDRust}: Scalable Deterministic Concurrency from Verifiable Rust Programs},
comment={ECOOP 2023 Distinguished Artifact Award},
doi = {10.4230/LIPIcs.ECOOP.2023.33},
editor = {Ali, Karim and Salvaneschi, Guido},
isbn = {978-3-95977-281-5},
location = {Seattle, Washington, USA},
pages = {33:1--33:39},
publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
series = {Leibniz International Proceedings in Informatics (LIPIcs)},
url = {https://drops.dagstuhl.de/opus/volltexte/2023/18226},
volume = {263},
abstract = {SAT/SMT-solvers and model checkers automate formal verification of sequential programs. Formal reasoning about scalable concurrent programs is still manual and requires expert knowledge. But scalability is a fundamental requirement of current and future programs.

Sequential imperative programs compose statements, function/method calls and control flow constructs. Concurrent programming models provide constructs for concurrent composition. Concurrency abstractions such as threads and synchronization primitives such as locks compose the individual parts of a concurrent program that are meant to execute in parallel. We propose to rather compose the individual parts again using sequential composition and compile this sequential composition into a concurrent one. The developer can use existing tools to formally verify the sequential program while the translated concurrent program provides the dearly requested scalability.

Following this insight, we present ConDRust, a new programming model and compiler for Rust programs. The ConDRust compiler translates sequential composition into a concurrent composition based on threads and message-passing channels. During compilation, the compiler preserves the semantics of the sequential program along with much desired properties such as determinism.

Our evaluation shows that our ConDRust compiler generates concurrent deterministic code that can outperform even non-deterministic programs by up to a factor of three for irregular algorithms that are particularly hard to parallelize.},
address = {Dagstuhl, Germany},
issn = {1868-8969},
month = jul,
urn = {urn:nbn:de:0030-drops-182263},
year = {2023},
}

Downloads

2307_Suchert_ECOOP [PDF]

Permalink

https://cfaed.tu-dresden.de/publications?pubId=3552


Go back to publications list